Anqie entropy and arithmetic compactification of natural numbers

نویسندگان

چکیده

To study arithmetic structures of natural numbers, we introduce a notion entropy functions, called anqie entropy. This possesses some crucial properties common to both Shannon's and Kolmogorov's entropies. We show that all functions with zero form C*-algebra. Its maximal ideal space defines our compactification which is totally disconnected but not extremely disconnected. also compute the $K$-groups continuous on compactification. As an application, any topological dynamical system $\lambda$, can be approximated by symbolic systems less than or equal $\lambda$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Arithmetic of Recursively Run-length Compressed Natural Numbers

We study arithmetic properties of a new treebased number representation, Recursively run-length compressed natural numbers, defined by applying recursively a run-length encoding of their binary digits. Our representation supports novel algorithms that, in the best case, collapse the complexity of various computations by superexponential factors and in the worse case are within a constant factor...

متن کامل

Arithmetic Properties of Apéry Numbers and Central Delannoy Numbers

Let p > 3 be a prime. We derive the following new congru-ences: p−1 n=0 (2n + 1)A n ≡ p (mod p 4) and p−1 n=0

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Journal of Mathematical Analysis

سال: 2021

ISSN: ['1735-8787', '2662-2033']

DOI: https://doi.org/10.1007/s43037-021-00162-6